37 research outputs found

    RVSL: Robust Vehicle Similarity Learning in Real Hazy Scenes Based on Semi-supervised Learning

    Full text link
    Recently, vehicle similarity learning, also called re-identification (ReID), has attracted significant attention in computer vision. Several algorithms have been developed and obtained considerable success. However, most existing methods have unpleasant performance in the hazy scenario due to poor visibility. Though some strategies are possible to resolve this problem, they still have room to be improved due to the limited performance in real-world scenarios and the lack of real-world clear ground truth. Thus, to resolve this problem, inspired by CycleGAN, we construct a training paradigm called \textbf{RVSL} which integrates ReID and domain transformation techniques. The network is trained on semi-supervised fashion and does not require to employ the ID labels and the corresponding clear ground truths to learn hazy vehicle ReID mission in the real-world haze scenes. To further constrain the unsupervised learning process effectively, several losses are developed. Experimental results on synthetic and real-world datasets indicate that the proposed method can achieve state-of-the-art performance on hazy vehicle ReID problems. It is worth mentioning that although the proposed method is trained without real-world label information, it can achieve competitive performance compared to existing supervised methods trained on complete label information.Comment: Accepted by ECCV 202

    Uncertainty Principle of the 2-D Affine Generalized Fractional Fourier Transform

    Get PDF
    The uncertainty principles of the 1-D fractional Fourier transform and the 1-D linear canonical transform have been derived. We extend the previous works and discuss the uncertainty principle for the two-dimensional affine generalized Fourier transform (2-D AGFFT). We find that derived uncertainty principle of the 2-D AGFFT can also be used for determining the uncertainty principles of many 2-D operations, such as the 2-D fractional Fourier transform, the 2-D linear canonical transform, and the 2-D Fresnel transform. These uncertainty principles are useful for time-frequency analysis and signal analysis. Moreover, we find that the rotation and the chirp multiplication of the 2-D Gaussian function can satisfy the lower bound of the uncertainty principle of the 2-D AGFFT.APSIPA ASC 2009: Asia-Pacific Signal and Information Processing Association, 2009 Annual Summit and Conference. 4-7 October 2009. Sapporo, Japan. Poster session: Signal Processing Theory and Methods I (6 October 2009)

    Fractional Fourier transforms and Wigner distribution functions for stationary and non-stationary random process

    No full text

    Reducing sampling error by prolate spheroidal wave functions and fractional Fourier transform

    No full text
    corecore